

SHARDA SCHOOL OF ENGINEERING & SCIENCES

Department of Chemistry and Biochemistry

COURSE

Molecular Diagnostic Techniques in Biochemistry (NV33008)

VALUE ADDED COURSE BROCHURE 2025-26

SHARDA UNIVERSITY

Sharda University envisions to serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship. It has 13,000+ students from 95+ countries, 29 states, and Union Territories, providing cultural diversity and global exposure to students. It has 26000+ alumni who are today leaders in their realms. Sharda University is NA AC A+ University with Overall NIRF Rank of 87. Teaching Learning Center at Sharda University is to equip the faculty members with the expertise, skills and knowledge they need for capacity building of students. Teaching as a profession requires highly specialized skills and knowledge to impact significantly on student learning and therefore teachers must refine their conceptual and pedagogical skills.

ABOUT THE SCHOOL

Sharda School of Engineering & Sciences (SSES) boasts of the strengths of engineering and basic sciences to foster innovation and technical excellence. The school provides exposure to different disciplines in science including Chemistry, Biochemistry, Physics, Mathematics, Mechanical Engineering, Civil Engineering, Electronics/Electrical Engineering and Environmental Sciences. The school is unique from other institutions of higher learning as it is committed to imparting knowledge in pure and applied sciences, which not only forms the foundation for further academic pursuits in science and technology but also acts as the foundation for students to pursue a career in multi facet directions. The academic programs are designed to meet the requirement of the latest technological developments and envisages to become a state-of-theart department that cater the students at Graduate, Post- Graduate and Research level along with providing high- quality education and cutting-edge interdisciplinary research in engineering & sciences.

DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY

The Department of Chemistry & Biochemistry endeavors to be nationally recognized model for nurturing students who can contribute to the ever changing technology of 21st century. The Department is committed to provide an excellent teaching & learning atmosphere for Undergraduate as well as post graduate students.

RESOURCE PERSON

Dr. Vivek Srivastava - Vivek Srivastava holds a PhD degree in Biotechnology from National Institute of Immunology, Delhi, an autonomous Institute of Department of Biotechnology, where he worked on Functional implication of BLM helicase phosphorylation by Check Point Kinase-2. He was a Postdoctoral Fellow at CSIR-Institute of Genomics & Integrative Biology, Delhi, under DBT- Welcome Trust Funded Project, where he worked mainly on telomere biology and telomerase ribo-nucleo-protein whose expression is high in cancer and stem cells and cancer cells need this enzyme for proliferation and cell division. Currently, Dr. Vivek is working as an Associate Professor of Biochemistry in Département of Chemistry & Biochemistry at Sharda University, Greater Noida. His areas of research are in telomere biology, epigenetics, DNA damage response pathways, Protein Biochemistry, cancer biology and post-translational modifications of protein.

	Schedule	
Week 1	16 July - 20 July	2 lectures
Week 2	21 July - 27 July	2 lectures
Week 3	28 July - 03 August	2 lectures
Week 4	04 August - 10 August	2 lectures
Week 5	11 August - 17 August	2 lectures
Week 6	18 August - 24 August	2 lectures
Week 7	25 August - 02 September	2 lectures
Week 8	03 September - 07 September	2 lectures
Week 9	08 September - 14 September	2 lectures
Week 10	15 September - 21 September	2 lectures
Week 11	22 September - 28 September	2 lectures
Week 12	29 September - 5 October	2 lectures
Week 13	6 October - 12 October	2 lectures
Week 14	13 October - 19 October	2 lectures
Week 15	20 October - 26 October	2 lectures
Week 16	27 October - 2 November	2 lectures
Week 17	3 November - 9 November	2 lectures
Week 18	10 November - 16 November	2 lectures
Week 19	12 November - 18 November	2 lectures

MODULE

School: SSES	Batch : 2025-28	
Program: Bachelor	of Science(UG) Current Academic Year: 2025-26	
Branch: Chemistry	y/Biochemistry Term: Odd(2501), Semester: V	
1. Course Code	NV33008	
2. Course Title	Molecular Diagnostic Techniques in Biochemistry	
3. Credits	0	
4. LTPC	2-0-0-0	
5. Course Type	Value added course	
6. Course Objective	Student will have the knowledge of: 1. To provide conceptual and practical knowledge of PCR and gel electrophoresis techniques. 2. To develop students' hands-on skills in molecular biology methods used in research and diagnos 3. To integrate interdisciplinary learning through applications in medicine, agriculture, and forensic	
Outcomes	CO1: Explain the fundamental principles and components involved in PCR and gel electrophoresis. CO2: Design and set up basic PCR experiments, including selection of primers and reaction condition CO3: Perform agarose gel electrophoresis for DNA analysis and interpret experimental results accurate CO4: Troubleshoot common issues in PCR and gel electrophoresis experiments. CO5: Demonstrate awareness of real-world applications of molecular diagnostic techniques in healt CO6: Practice safe laboratory procedures and maintain accurate experimental records and reports.	ons. rately.
8. Course Description	This value-added course is designed to equip undergraduate students with theoretical knowledge	
Description	in key molecular biology techniques—Polymerase Chain Reaction (PCR) and Gel Electrophoresis principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research.	
·	principles, methodology, troubleshooting strategies, and real-world applications of these technic	ques in diagnostic
·	principles, methodology, troubleshooting strategies, and real-world applications of these technic	ques in diagnostic
9. Outline syllabus	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins	CO Mappin
9. Outline syllabus Unit 1	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools	CO Mappin CO1/CO6 CO1/CO6
9. Outline syllabus Unit 1 A	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins	CO Mappin CO1/CO6 CO1/CO6
9. Outline syllabus Unit 1 A B	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types	CO Mappin CO1/CO6 CO1/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6
9. Outline syllabus Unit 1 A B C Unit 2	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe)	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C	principles, methodology, troubleshooting strategies, and real-world applications of these technic biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6 CO3/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C Unit 3 A B C Unit 4	principles, methodology, troubleshooting strategies, and real-world applications of these technibiotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE Laboratory Practical Sessions-I DNA extraction Preparation of PCR reaction	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6 CO3/CO6 CO3/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C Unit 3 A	principles, methodology, troubleshooting strategies, and real-world applications of these technibiotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE Laboratory Practical Sessions-I DNA extraction	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6 CO3/CO6 CO3/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C Unit 3 A B C	principles, methodology, troubleshooting strategies, and real-world applications of these technibiotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE Laboratory Practical Sessions-I DNA extraction Preparation of PCR reaction	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6 CO3/CO6 CO3/CO6 CO3/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C Unit 4 A B C	principles, methodology, troubleshooting strategies, and real-world applications of these technibiotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE Laboratory Practical Sessions-I DNA extraction Preparation of PCR reaction Running a PCR using thermal cycler	CO Mappin CO1/CO6 CO1/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C Unit 4 A B C Unit 4 A B C Unit 5 A B	principles, methodology, troubleshooting strategies, and real-world applications of these technibiotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE Laboratory Practical Sessions-I DNA extraction Preparation of PCR reaction Running a PCR using thermal cycler Laboratory Practical Sessions-II Gel preparation, loading samples, running gel electrophoresis Visualization of results using gel documentation system	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6 CO3/CO6 CO3/CO6 CO4/CO6 CO4/CO6 CO4/CO6 CO5/CO6
9. Outline syllabus Unit 1 A B C Unit 2 A B C Unit 3 A B C Unit 4 A B C Unit 4 A B C Unit 5 A	principles, methodology, troubleshooting strategies, and real-world applications of these techni- biotechnology, forensic science, and research. Introduction to Molecular Biology Tools DNA, RNA, and proteins Primer Designing Tools Overview of PCR and Gel Electrophoresis Polymerase Chain Reaction (PCR) – Theory and Types Principle and mechanism of PCR Components of a PCR reaction Types: Conventional PCR, qPCR, RT-PCR, multiplex PCR, Troubleshooting PCR reactions Gel Electrophoresis – Theory and Applications Principle of agarose gel electrophoresis DNA ladder, loading dye, and visualization (Ethidium bromide, SYBR Safe) Analysis and documentation of gel results, Native vs SDS-PAGE Laboratory Practical Sessions-I DNA extraction Preparation of PCR reaction Running a PCR using thermal cycler Laboratory Practical Sessions-II Gel preparation, loading samples, running gel electrophoresis	CO Mappin CO1/CO6 CO1/CO6 CO1/CO6 CO2/CO6 CO2/CO6 CO2/CO6 CO3/CO6 CO3/CO6 CO3/CO6 CO4/CO6 CO4/CO6 CO4/CO6