

ACCREDITED

HANDS ON TRAINING PROGRAM ON AI, MAGHINE LEARNING, COMPUTER VISION, DEEP LEARNING AND NVIDIA DGX100 SUPERCOMPUTER

<image>

Centre for Artificial Intelligence in Medicine, Imaging & Forensics (CAIMIF) Starting from 01st Feb to 03rd May 2025 (40 Hrs Total) The "AI, Machine Learning, Computer Vision, Deep Learning and Nvidia DGX100 Supercomputer" training program is designed to empower participants with the essential skills and knowledge needed to excel in the fields of programming and artificial intelligence. This program offers a comprehensive introduction to Python, covering foundational concepts and practical coding techniques. Participants will also explore key AI, machine learning and deep learning principles, learning how to implement and apply these techniques to real-world problems. Through hands-on projects and guided exercises, attendees will gain practical experience in developing and deploying AI/ML models, equipping them with the tools to navigate the rapidly evolving tech landscape.

Objectives

• **Foundational Python Skills:** Equip participants with a solid understanding of Python programming basics, including data types, control structures, functions, and libraries, to ensure they can write and debug simple Python scripts. Exploratory Data Analysis: Understanding various types of data, techniques for pre-processing the data and visualizing the data using Matplotlib and Seaborn libraries and implementing statistical functions on data using python.

• Machine Learning Foundations and Advanced Concepts: Provide an overview of key AI/ML concepts, such as supervised and unsupervised learning, model evaluation metrics, and common algorithms Linear and Logistic Regression, decision trees, random forests, support vector machines, K-means Clustering, Concept of dimensionality reduction and ensemble techniques

• **Practical Application of AI/ML Techniques:** Enable participants to apply AI/ML techniques using Python libraries (e.g., NumPy, Pandas, Scikit-learn, TensorFlow) to solve real-world problems, including data preprocessing, model training, and evaluation.

• **Deep Learning Foundations and Advanced:** Demonstrating neural networks using feedforward neural networks and backpropagation algorithm, understanding activation and cost functions, using artificial neural networks for regression and classification. Understanding and using Convolution neural networks for image classifications.

• Hands-on Project Development: Guide participants through developing and deploying a simple Machine Learning (ML) project, from problem definition and data collection to model implementation and performance optimization, fostering practical experience and problem-solving skills.

• Working with Nvidia DGX100: Introducing Nvidia DGX100 server, docker containers and Kubeflow notebooks to the participants and enabling participants to train AI models on it.

Schedule and Course Details

Timing: 10:00 AM – 4:00 PM (Working Saturdays)

working with Julyter Notebooks and Google Cabb (1000-100) • Working with Strings • Working with Strings 15/02/2025 Saturdey Data Spes, Loga and Conditional Statements • Working with Strings • Using With Strings • Functions • Introduction to Numpy module, Numpy Arrays and their manipulation, Numpy Functions • Pinds Stata Frames and Herr manipulation • Introduction to Numpy module, Numpy Arrays and Herr manipulation, Numpy Functions • Pinds Stata Frames and Herr manipulation • Data Manipulation using Numpy and Pandas (using a case study) (200-400) 01/03/2025 Saturdey Exploratory Data Analysisis (1000-1100) • Types of Data • Data Preprocessing and Feature Selection (200-400) • Scaling and Nomalizing data • Data Preprocessing and Feature Selection (200-400) • Scaling and Nomalizing data • Introduction to Artifici Response. Sins for the selection on the selection status of the selection on the selection status of the selection on the selection status of the selection status of the selection on the selection status of the selection on the selection status of the selection status of the selection on the selection on the selection status of the selection	Date	Day	Lecture Topic	Hours		
- sytem System, Generators and variables - Concept of Laborators -	01/02/2025	Saturday		5hrs		
- bits typics. Loop and Conditional Statements (2300-4300) - Orion built in data structures. Luts Tuples, Dictionalies and sets - working with strugs Shree 15/02/2025 Saturday Saturday Shrees - Introduction to Numpy module, Numpy Arrays and their manipulation, Numpy Functions, - Brands Data Types (Series and dataframes) - Brands Data Types (Series and Adarfames) - Brands Data Types (Series and Machine Learning Foundations and Advanced) Shrs (10:00-1:00) (2:00-4:00) 08/03/2025 Saturday Machine Learning Foundations - Graduction to Afficial Intelligence and Machine Learning. Deep Learning - Introduction Supervised, Unsupervised and Beinforcement Learning. Deep Learning - Introduction - Graducin Math, Presion, Reall, FLScore, ROC Curve, Classification report - Bradictions, Model Accuracy, Graphical Pitting - Graduction text, Presion, Reall, FLScore, ROC Curve, Classification report - Bradiction and prediction using decision trees and Random Torest for - Bradiction and prediction using decision trees and Random Torest for - Bradiction and Prediction using decision trees and Random Torest for - Bradiction and Prediction using decision trees and Random Torest for - Bradiction and Introduction to Neural Networks - Time Series - Introduction t			5 , 5	(10:00-1:00)		
 - one bulk-in dis structures - Lists, Tuples, Dictionalies and sets - encloses - Functions 15/02/2023 Saturdy Date Manipulation with NumP y and Pandas: - Introduction to Numpy module, Numpy Araya and their manipulation, Numpy Function, - Introduction to Numpy module, Numpy Araya and their manipulation, - Pandas Data Frames, and their manipulation				(2:00-4:00)		
Function Strate 15/02/2025 Saturday Data Manipulation with NumP and Pandas: Introduction to Numpy module, Numpy Arrays and their manipulation, Numpy Functions Pandas data Space Series and dataframes) Pandas data Space Series and dataframes) Pandas data Space Series and Adataframes) Pandas data Space Series and Adataframes) Pandas data Space Series and Adataframes) 			Core built-in data structures – Lists, Tuples, Dictionaries and sets			
15/02/2025 Saturday Data Manipulation with NumPy and Pandas: Introduction to Numpy Module, Numpy Arrays and their manipulation, Numpy Functions 						
Introduction to Numpy module, Numpy Arrays and their manipulation, Numpy Functions Introduction to Mumpy and Jasta and Jasta State Straws and their manipulation Pandas data types (series and dataframes) Pandas data types (series and dataframes) Pandas data Types (SV excel et al. 1997) Pandas data Types (SV excel et al. 1997) The State Manipulation using Numpy and Pandas (using a case study) Saturday Saturday Saturday Machine Learning Foundations and Advanced) Machine Learning Foundations and Advanced Machine Learning Foundations Introduction to Athrifical Intelligence and Machine Learning, Deep Learning – Introduction Supervised, Unsupervised and Reinforcement Learning Concept of Logistic Regression: Ribary Learning Foundations and Advanced Machine Learning Foundations Inter Regression Problem Analysis, Mathematical modelling of Regression Model, CS Unsupervised, and Reinforcement Learning Concept of Logistic Regression: Ribary Logistic Regression Example Problem Contusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report Decision Trees and Rendom Forest: Example Problem Contusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report Decision Trees and Rendom Forest: Example Problem Contusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report Decision Trees and Rendom Forest: Example Problem Contision Analysis Time Series - Introduction, FCMacing, Gadaboost, Xgboost Machine Learning Foundations, and Advanced and Nividia DGX100 (2:00-4:00) (2:	15/02/2025	Saturday		5hrs		
9 - Pandas data types (series and dataframes) - Pandas (bata types) 9 - Pandas Data/Ranos and their manpluation - Data Manipulation using Numpy and Pandas (using a case study) Shirs 01/03/2025 Saturday Exportatory Data Analysis: - Types of Data Shirs (10:00-100) (2:00-4:00) 08/03/2025 Saturday Machine Learning Foundations - Introduction to Artificial Intelligence and Machine Learning. Deep Learning - Introduction (2:00-4:00) Shirs 08/03/2025 Saturday Machine Learning Foundations - Introduction and regularizations - Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Ad, Squared, - Model Pedictions, Graphical Physics and Random forest: Example problem - Concept of Logistic Regression: Binary Logistic Regression. Report Solution to Rest. Example Problem - Concept of Logistic Regression: Binary Logistic Regression from the starting - Linear Regression: Binary Logistic Regression: Report Solution Report Solution Report - Report - Report - Report - Report Solution Report - Report Solution Report - Report		-		(10:00-1:00)		
9 - Pandas DataFrames and their manipulation - Data Manipulation using Numpy and Pandas (using a case study) Shrs 01/03/2022 Saturday Exploratory Data Analysis: - Data Pre-processing and Feature Selection - Data Visualization using natipotith and seaborn - Implementation of Basic Statistics methods Shrs 08/03/2023 Saturday Machine Learning Foundations - Implementation of Basic Statistics methods Shrs 08/03/2025 Saturday Machine Learning Foundations - Implementation and regularizations - Confusion and regularizations - Gradient Descent Higgorith, Parameters & Hyper parameters, R Squared & Adj, Squared, Model, Cost Function and regularizations - Gradient Descent Higgorith, Parameters & Hyper parameters, R Squared & Adj, Squared, - Model Picelictions, Model Accuracy, Graphical Plotting - Concept of Legistic Regression Environ Forest: Example problem - Confusion Matrix, Precision, Recall, F1-Score, NOC Curve, Classification neport - Confusion Matrix, Precision, Recall, F1-Score, NOC Curve, Classification neport - Confusion Matrix, Precision, Recall, F1-Score, NOC Curve, Classification report - Confusion Matrix, Medichico: Concepts of Decision Trees and Random forest: Example problem - Confusion Matrix, Medichico: Concepts and need for dimensionality reduction, PCA, LDA - Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and - Working Principle - Support Vector Machines - Time Series - Introduction, Tc-Maans Advanced and Nvidia DGX1000 (10:00-1:00) (2:00-4:00) 55/04/2025 Saturday Computer Vision and Introduction, Colur filtering on Image, Image Contour - Feature Extraction, Cascade Classifier and HaarCascade - Frontal Face & Eyr Deleatrioning Hourowsking, Single Layer Perceptron Model, - Mutilayer				(2:00-4:00)		
01/03/2025 Saturday Lota Manipulation using Numpy and Pandas (using a case study) Shirs 01/03/2025 Saturday Exploratory Data Analysis: - Types of Data - Data Pre-processing and Feature Selection - Scaling and Normalizing data - Data Visualization using matpitolib and seaborn - Implementation of Baic Statistics methods (10:00-1:00) (2:00-4:00) 08/03/2025 Saturday Machine Learning Foundations - Introduction to Artificial Intelligence and Machine Learning. Deep Learning - Introduction Module 2 (Machine Learning Foundations - Interduction and regularizations - Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adi, Squared, Module Pecilicions, Matrix, Paceisan, Reg. - Concept of Logistic Regression: Binary Logistic Regression. Example Problem - Confusion Matrix, Paceisan, Real, Ti-Score, BOC Curve, Classification exponents - Conseling Advanced - Dissification and prediction using decision trees and random forest for classification - Cassification and prediction using decision trees and random forest for - Dissification and prediction using decision trees and random forest for - Dissification and prediction using decision trees and Random forest for - Dissification and prediction using decision trees and Random forest for - Dissification and prediction using decision trees and Advanced and Nvidia DGX100) Shrs (10:00-1:00) (2:00-4:00) 05/04/2025 Saturday Computer Vision and Introduction, E-Means Clustering: Concept and working Principle - Support Vector Machines - Time Series - Introduction, Techniques and applications, Components of Time Series - Foreasting, AIMM Model - Advanced Ensemble Learning; Bagging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced - Romal Face K Sy by Detection using Octin Hi						
01/03/2025 Saturday Exploratory Data Analysis: (19:00-1:00) (2:00-4:00) (2:00						
• 'ypes of Data (10:00-1:00) • Caling and Normalizing data (2:00-4:00) • Data Pre-processing and Feature Selection (2:00-4:00) • Otal Pre-processing and Feature Selection (2:00-4:00) • Data Visualization using matplotlib and seaborn • implementation of Basic Statistics methods 08/03/2025 Saturday Machine Learning Foundations • Introduction to Artificial Intelligence and Machine Learning, Deep Learning - Introduction Shrs • Ordel Predictions and regularizations • Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adj, Squared, Model Predictions, Model Accuracy, Graphical Plotting Shrs • Ordel Predictions and regularizations • Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adj, Squared, Model Predictions, Model Accuracy, Graphical Plotting Shrs • Ordel Predictions and parameters and Random forest: Concept and model in the cashift and prediction using decision trees and random forest: Example problem • Chashift algorithm, Brancade • Ordula 2 (Deep Learning Clustering Introduction, K-Means Clustering: Concept and working Principle • Shrs • Time Series - Introduction in Central theorems the analysis, Mathematical model in the Series Forecasting, AlMA Model • Othersionality reductions to Concept and applications, Components of Time Series Forecasting, AlMA Model • Unsupervised Learning: Working & implementation with Image,	01/03/2025	Saturday		5hrs		
9 Jota Pre-processing and Feature Selection (2:00-4:00) 9 Jota Visualization using matplotile and seaborn (2:00-4:00) 08/03/2025 Saturday Machine Learning Foundations (1:0:0:0:1:0) 09/03/2025 Saturday Machine Learning Clustering responses Regression Process ROC Curve, Classification report (1:0:0:0:1:0) 29/03/2025 Saturday Machine Learning Clustering Introduction, K-Means Clustering: Concept and Working Principle Shrs 29/03/2025 Saturday Machine Learning Foundations and Advanced and Nvidia DGX100 (2:0:0:4:0) 05/04/2025 Saturday Machine Learning Foundations and Advanced and Nvidia DGX100 (2:0:0:4:0) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs 05/04/2025 Saturday Computer Vision and In	01/03/2025	Saturday				
• Scaling and Normalizing data • Scaling and Normalizing data • Nodule 2 (Machine Learning Foundations and Advanced) 08/03/2025 Saturday Machine Learning Foundations • Introduction to Artificial Intelligence and Machine Learning. Deep Learning – Introduction Nodel, Cost Function and regularizations • Shrs • Interaction to Artificial Intelligence and Machine Learning. Deep Learning – Introduction Nodel, Cost Function and regularizations • Shrs • Cardient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adj, Squared, Model Predictions, Model Accuracy, Graphical Potening • Shrs • Concept of Logistic Regression: Binary Logistic Regression, Example Problem • Concept of Logistic Regression; Fisione, PCC, Urwe, Classification report • Decision Trees and Random Forest: Concepts of Decision Trees and Random forest: for classification and prediction using decision trees and random forest: Example problem • Shrs 29/03/2025 Saturday • Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA • Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and • Varianced Insemble Learning: Bagging, Boosting, Adaboost, Xgboost • Shrs 05/04/2025 Saturday • Computer Vision and Introduction to Neural Networks • Introduction to OpenCV • Shrs • Introduction to OpenCV • Introduction to OpenCV • Introduction to Neural Networks • Introduction to Neural Networks • Shrs • Ostination mathy with resolution. Cloour filtering on Image, Image Contour • Feature Extraction. Casced Cl				. ,		
• Implementation of Bais Statistics methods 08/03/2025 Saturday Machine Learning Foundations • Introduction to Artificial Intelligence and Machine Learning. Deep Learning – Introduction opervised, Unsupervised and Reinforcement Learning. • Shrs (10:00-1:00) (2:00-4:00) 08/03/2025 Saturday • Artificial Intelligence and Machine Learning. Deep Learning – Introduction of Artificial Intelligence and Machine Learning. • Shrs (10:00-1:00) 08/03/2025 Saturday • Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adj, Squared, • Model Predictions, Model Accuracy, Graphical Picting • Saturday 29/03/2025 Saturday Machine Learning Advanced • Decision Trees and Random Forest: Concepts of Decision Trees and Random forest: Example problem • Constitution and prediction concept and need for dimensionality reduction, PCA, LDA • Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle • Support Vector Machines • Time Series - Introduction, Techniques and applications, Components of Time Series forecasting, ARIMA Model • Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost • Model 3: Obep Learning Poundations and Advanced and Nividia DGX100) Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks • Trined Series - Hindouction, Colour filtering on Image, Image Contour • Feature Extraction, Cascade Classifier and HaarCascade • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade • Frontal Face & E						
Module 2 (Machine Learning Foundations and Advanced) 08/03/2025 Saturday Machine Learning Foundations Introduction to Artificial Intelligence and Machine Learning. Deep Learning – Introduction Supervised, Unsupervised and Reinforcement Learning Intera Regression: Regression Problem Analysis, Mathematical modelling of Regression Model, Cost Function and regularizations - Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adj. Squared, - Model Predictions, Model Accuracy, Graphical Plotting - Concept of Logistic Regression: Binary Logistic Regression, Example Problem - Contision Matrix, Precision, Recall, P1-Score, ROC Curve, Classification report - Decision Trees and Random Forest: Concepts of Decision Trees and Random forest: Example problem - Constistin Matrix, Precision, Recall, P1-Score, ROC Curve, Classification - Classification and prediction using decision trees and random forest: Example problem - Support Vector Machines - Time Series - Introduction, Techniques and applications, Components of Time Series - Forecasting, ARIMA Model - Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost - Module 3 (Deep Learning: Foundations and Advanced and Nividia DGX100) - Sof/04/2025 Saturday Shrs (10:00-1:00) - Introduction to OpenCV - Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour - Feature Extraction, Cascade Classifier and HaarCascade - Prontal Face & Eye Detection out Grup CV2 (Computer Vision) and Haar Cascade - Introduction to Neural Networks ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network: ANN & Working						
08/03/2025 Saturday Machine Learning Foundations Shrs 08/03/2025 Saturday Machine Learning foundations Shrs 08/03/2025 Saturday Machine Learning foundations Shrs 08/03/2025 Saturday Shrs Shrs 08/03/2025 Saturday Shrs Sints 08/03/2025 Saturday Shrs Sints 08/03/2025 Saturday Machine Learning Foundations Shrs 29/03/2025 Saturday Machine Learning Advanced Shrs 29/03/2025 Saturday Machine Learning: Clustering Introduction, K-Means Clustering: Concept and pediction using decision trees and random forest: Example problem Shrs 29/03/2025 Saturday Machine Learning: Clustering Introduction, K-Means Clustering: Concept and pediction. Scomponents of Time Series - Time Series - Introduction, Techniques and applications, Components of Time Series - Stoport Vector Machines Time Series - Introduction, Colour filtering on Image, Image Contour Shrs 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 10/04/2025 Saturday Computer Vision and Introduction to Neural Networks - NN: ANN & Working & implementation with Image, Edge Detection & smoothing - Fou			-			
00/00/2023 Saturday Introduction to Artificial Intelligence and Machine Learning, Deep Learning – Introduction Supervised, Luxspervised and Reinforcement Learning, Deep Learning – Introduction Supervised, Luxspervised and Reinforcement Learning Concept of Logistic Regression: Binary Logistic Regression, Example Problem Concept of Logistic Regression: Binary Logistic Regression, Example Problem Concept of Logistic Regression: Binary Logistic Regression, Example Problem Concept of Logistic Regression: Binary Logistic Regression, Example Problem Consent of Logistic Regression: Binary Logistic Regression, Example Problem Consent of Logistic Regression: Binary Logistic Regression, Example Problem Consent of Logistic Regression: Binary Logistic Regression, Example Problem Consent of Logistic Regression: Binary Logistic Regression, Example Problem Consent of Logistic Regression: Binary Logistic Regression, Example Problem Consent of Logistic Regression: Concepts of Decision Trees and Random Forest: Example problem Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle Support Vector Machines Time Series – Introduction Techniques and applications, Components of Time Series Forecasting, ARIMA Model Advanced Ensemble Learning: Bugging, Boosting, Adaboost, Xgboost Modele 3 (Deep Learning Foundations and Advanced and Nvidia DGX100) Shars (10:00-1:00) Introduction to Neural Networks Introduction to Neural Networks Introduction Neural Networks Introduction Neural Networks<						
Supervised, Unsupervised and Reinforcement Learning (10:00-10) Pinear Regression: Regression Problem Analysis, Mathematical modelling of Regression Model, Cost Function and regularizations (2:00-4:00) Concept of Logistic Regression: Binary Logistic Regression, Example Problem (2:00-4:00) Contissin Matrix, Precision, Reall, F1-Score, ROC Curve, Classification report (2:00-4:00) 29/03/2025 Saturday Machine Learning Advanced (2:00-4:00) 29/03/2025 Saturday Machine Learning Advanced (2:00-4:00) 29/03/2025 Saturday Obmensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA overking Principle (2:00-4:00) 29/03/2025 Saturday Computer Vision and Introduction, Techniques and applications, Components of Time Series - Forecasting, ARIMA Model (2:00-4:00) 29/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday	08/03/2025	Saturday				
• Intear Regression: Regression Problem Analysis, Mathematical modelling of Regression Model, Cost Function and regularizations • Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adj. Squared, • Model Predictions, Model Accuracy, Graphical Plotting • Concept of Logistic Regression, Example Problem • Concept of Logistic Regression: Binary Logistic Regression, Example Problem • Contusion Matrix, Precision, Recall, P1-Score, ROC Curve, Classification report • Classification and prediction using decision trees and random forest: Example problem • Classification • Classification Shrs 29/03/2025 Saturday Machine Learning Advanced • Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA • Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle • Support Vector Machines • Time Series - Introduction, Techniques and applications, Components of Time Series • Forecasting, AIMM Model • Advanced Ensemble Learning: Flagging, Boosting, Adaboost, Xgboost Shrs 05/04/2025 Saturday Computer Vision and Introduction Networks • Introduction to OpenCV • Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour • Feature Extraction, Cascade Classifier and HaarCascade Introduction to Neural Networks • Artificial Neural Network • Regression: ADN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network • Comvolution operation, Padding, Stride, FilterstRemels), Pooling, Flattenning • Deeloying convolutional neural networks of RNN Allow • Convolution operation, Padding, Stride, FilterstRemels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image dassification using CNN) • Introduction to the NNN Model, Str						
Model, Cost Function and regularizations Gradient Descent Algorithm, Parameters & Hyper parameters, R Squared & Adji, Squared, Model Predictions, Model Accuracy, Graphical Plotting Concurse of Logistic Regression, Example Problem Contrusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report Decision Trees and Random Forest: Concepts of Decision Tress and Random forest for classification Shrs 29/03/2025 Saturday Machine Learning Advanced Shrs 29/03/2025 Saturday Machine Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle Shrs 29/03/2025 Saturday Computer Vision and Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model Shrs 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks - Introduction to OpenCV Shrs 11/04/2025 Saturday Computer Vision and Introduction to Neural Networks - Foreface Cluster and HaarCascade - Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade - Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade - Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade - Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade - Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade - Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade - Frontal Face & Eye Detection using Contur - Regression with ANN: Learning Algorithm - Activation Functions - Consolution Repural Networks and Backpropag				(2:00-4:00)		
 Model Predictions, Model Accuracy, Graphical Plotting Concept of Logistic Regression: Binary Logistic Regression, Example Problem Contusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report Decision Trees and Random Forest: Concepts of Decision Tress and Random forest for classification Classification and prediction using decision trees and random forest: Example problem Machine Learning AdVanced Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle Support Vector Machines Time Series – Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model Advanced Ensemble Learning: Boging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced and Nividia DGX100) Image Processing: Working & implementation with Image, Edge Detection & smoothing of Image, Working With resolution, Colour filtering on Image, Image Contour Feature Extraction, Cascade Classifier and HaarCascade Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks. Artificial Neural Network: ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Networks Artificial Neural Networks: CNNVs Human Brain Consolution Applying Gradient Descent Algorithm. Consolution application operation, Padding, Stride, Filters/Romely, Pooling, Flattenning Deep Learning Foundations and Advanced Regression with ANN: Learning Algorithm Convolution operation, Padding, Stride, Filters/Romely, Pooling, Flattenning Deploying convolutional neural networks of Thess Case Introduction to Disker Containers and Kubeflow Not			Model, Cost Function and regularizations			
9 • Concept of Logistic Regression: Binary Logistic Regression, Example Problem • Confusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report • Decision Trees and Random Forest: Concepts of Decision Tress and Random forest for classification and prediction using decision trees and random forest: Example problem 29/03/2025 Saturday Machine Learning Advanced • Shrs 29/03/2025 Saturday Machine Learning Advanced • Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA (10:00-1:00) • Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle • Support Vector Machines • Time Series - Introduction, Techniques and applications, Components of Time Series - Forecasting, ARIMA Model • Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced and Nvidia DGX100) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks • Introduction to OpenCV Introduction to OpenCV • Introduction to OpenCV • Introduction to Neural Networks • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks • Artificial Neural Networks • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks and Advanced • Artificial Neural Networks • Feeedforward Neural Network						
9 • Confusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report • Decision Trees and Random Forest: Concepts of Decision Tress and Random forest for classification 29/03/2025 Saturday Machine Learning Advanced Shrs 29/03/2025 Saturday Machine Learning Advanced Shrs • Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA working Principle Support Vector Machines Sinrs • Time Series – Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model • Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost Shrs 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Shrs (10:00-1:00) 05/04/2025 Saturday Computer Vision and Environ, Cascade Classifier and HaarCascade Shrs (10:00-1:00) 11/04/2025 Saturday Deep Learning Foundations and Advanced Hintroduction to Neural Networks Store Ship Working & Implementation with Image, Edge Detection & smoothing of Image, Working with resolution, Colour fitering on Image, Image Contour						
• Decision Trees and Random Forest: Concepts of Decision Tress and Random forest for classification and prediction using decision trees and random forest: Example problem29/03/2025SaturdayMachine Learning Advanced • Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle • Support Vector Machines • Time Series - Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA ModelShrs (10:00-1:00) (2:00-4:00)05/04/2025SaturdayComputer Vision and Introduction to Neural Networks • Introduction to OpenCV • Introduction to Neural Networks • Artificial Neural Networks • Cost Function: Applying Gradient Descent Algorithm • Convolution Pueral Networks • Cost Function: Applying Gradient Descent Algorithm • Convolution Neural Networks CONVA PIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN • Convolutional Neural Networks (CONVA) • Introduction to Neural Networks • Convolutional Neural Networks (CONVA) • Introduction to Dos Cont • Convolutional Neural Networks (CONVA) • Introduction to Long Sorte, Filterst/Kemels), Pooling, Flattenning • Convolutional Neural Networks (CONVA) • Introduction to Dos Cont • Convolutional Neural Networks (CONVA) • Introduction to Long Sort-term memory (LSTM) and transformersShrs (10:00-						
classification < Classification and prediction using decision trees and random forest: Example problem29/03/2025SaturdayMachine Learning Advanced · Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA · Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle · Support Vector Machines · Time Series - Introduction, Techniques and applications, Components of Time Series · Forecasting, ARIMA Model · Advanced Ensemble Learning: Bagging, Boosting, Adaboost, XgboostShrs (10:00-1:00) (2:00-4:00)05/04/2025SaturdayComputer Vision and Introduction to Neural Networks · Introduction to OpenCV · Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour · Feature Extraction, Cascade Classifier and HaarCascade · Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks · Redure Neural Networks · Feedforward Neural Networks · Regression with ANN: Learning Algorithm · Convolutional Neural Networks and Backpropagation Algorithm · Convolutional Neural Networks in TensorFlow MPIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced · Regression with ANN: Learning Algorithm · Convolutional Neural Network: CNN Vs Human Brain · Convolution Neural Networks in TensorFlow (Image classification using CNN) · Introduction to DeX Server · Introduction to DeX Server · Introduction to DeX Server · Introduction to DoX Server · Introduction						
29/03/2025SaturdayMachine Learning Advanced Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA uorsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle Support Vector Machines Time Series - Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model Advanced Ensemble Learning Foundations and Advanced and Nvidia DGX1000Shrs (10:00-1:00) (2:00-4:00)05/04/2025SaturdayComputer Vision and Introduction to Neural Networks - Introduction to OpenCV - Introduction to Neural Networks - Artificial Neural Networks - Feature Extraction, Cascade Classifier and HaarCascade Introduction to Neural Networks - Artificial Neural Networks - Artificial Neural Networks and Backpropagation Algorithm - Activation Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent - TensorFlow library for Al, Keras – High Level TensorFlow APIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeeg Learning Foundations and Advanced - Feedforward Neural Network and Backpropagation Algorithm - Activation Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent - TensorFlow library for Al, Keras – High Level TensorFlow APIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayWorking with NNN: Learning Algorithm - Convolutional Neural Network CINN's Human Brain - Convolution operation, Padding, Stride, Filters(Remels), Pooling, Flattenning - Deploying convolutional neural networks in TensorFlow (Image classification using CINN) - Introduction to Deck Containers and Kubeflow Notebooks - Introduction to DGX Server - Introduct			classification			
• Dimensionality Reduction: Concept and need for dimensionality reduction, PCA, LDA • Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle • Support Vector Machines • Time Series - Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model • Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost(10:00-1:00) (2:00-4:00)05/04/2025SaturdayComputer Vision and Introduction to Neural Networks • Introduction to OpenCV • Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour • Feature Extraction, Cascade Classifier and HaarCascade • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks • Artificial Neural Networks • Artificial Neural Network and Backpropagation Algorithm • Activation Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for AI, Keras - High Level TensorFlow APIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeeg Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Convolutional Peural Networks (TNVs, Human Brain • Convolution operation, Padding, Stride, Filters(TN), and transformers • Introduction to Decis Server • Introduction to DGS Forver • Introduction to DGS Forver • Introduction to DGS Server • Introduction to DGS Server 						
• Unsupervised Learning: Clustering Introduction, K-Means Clustering: Concept and working Principle(2:00-4:00)• Support Vector Machines • Time Series – Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model(2:00-4:00)• Advanced Ensemble Learning: Bagging, Boosting, Adaboost, XgboostModule 3 (Deep Learning: Bagging, Boosting, Adaboost, Xgboost(1:0:00-1:00)05/04/2025SaturdayComputer Vision and Introduction to Neural Networks • Introduction to OpenCVShrs (1:0:00-1:00)(1:0:00-1:00)05/04/2025Fornat Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction Neural Networks • Artificial Neural Networks • Cast Functions • Cost Functions • Cost Functions • Cost Functions • Cost Function: Applying Gradient Descent Algorithm • Catsvidon Functions • Convolution and Neural Network crNN & Working, Stingle Layer Perceptron Model, Multilayer Neural Network and Backpropagation Algorithm • Activation Functions • Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras - High Level TensorFlow APIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN • Convolution an eural networks in TensorFlow Image classification using CNN • Introduction to the RNN model, Types of RNN & Use Case • Introduction to the RNN model, Types of RNN & Use Case • Introduction to DGX Server • Introduc	29/03/2025	Saturday	-			
working Principle Support Vector Machines Intervector Machines Time Series – Introduction, Techniques and applications, Components of Time Series – Forecasting, ARIMA Model Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced and Nvidia DGX100) Computer Vision and Introduction to Neural Networks Shrs Introduction to OpenCV Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Contour Feature Extraction, Cascade Classifier and HaarCascade Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks Artificial Neural Networks Artificial Neural Networks Artificial Neural Network Artificial Neural Networks Sing Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent Shrs 19/04/2025 Saturday Deep Learning Foundations and Advanced Shrs Shrs - Regression with ANN: Learning Algorithm Classification with ANN (2:00-4:00) (2:00-4:00) 19/04/2025 Saturday Deep Learning Foundations and Advanced Shrs - Regression with ANN: Learning Algorithm Classification with ANN (2:00-4:00) (2:00-4:00) 03/05/2025 Saturday Working with Nvidia DGX100 SuperComputer Shir						
Support Vector Machines • Time Series – Introduction, Techniques and applications, Components of Time Series Forecasting, ARIMA Model • Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced and Nvidia DGX100)05/04/2025SaturdayComputer Vision and Introduction to Neural Networks • Introduction to OpenCV • Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour • Feature Extraction, Cascade Classifier and HaarCascade • Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks • Artificial Neural Networks • Feedforward Neural Networks • Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras – High Level TensorFlow APIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Convolutional Neural Network: CNN Vs Human Brain • Convolution operation, Padding, Stride, Filters(Remels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to Log short-term memory (LSTM) and transformersShirs (10:00-1:00) (2:00-4:00)03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to Docker Containers and Kubeflow Notebooks • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShirs (10:00-1:00) (2:00-4:00)				(2:00-4:00)		
Forecasting, ARIMA Model - Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced and Nvidia DGX100) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Introduction to OpenCV Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour Feature Extraction, Cascade Classifier and HaarCascade Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks Artificial Neural Networks ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Networks Feedforward Neural Networks and Backpropagation Algorithm Activation Functions Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent TensorFlow library for Al, Keras – High Level TensorFlow API Shrs (10:00-1:00) (2:00-4:00) (2:00-4:00) Introduction to the RNN model, Types of RNN & Use Case Introduction to Descer Ontainers and Kubeflow Notebooks (10:00-1:00) (2:00-4:00) 						
• Advanced Ensemble Learning: Bagging, Boosting, Adaboost, Xgboost Module 3 (Deep Learning Foundations and Advanced and Nvidia DGX100) 05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Introduction to OpenCV Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour · Feature Extraction, Cascade Classifier and HaarCascade Introduction to Neural Networks · Artificial Neural Networks · Artificial Neural Networks-ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network · Feedforward Neural Network and Backpropagation Algorithm · Activation Functions · Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent · TensorFlow library for Al, Keras - High Level TensorFlow API Shrs (10:00-1:00) (2:00-4:00) (1:00-1:00) (2:00-4:00) (2:00-4:00) (2:00-4:00) (2:00-4:00) (1:00-1:00) (2:00-4:00) (1:000-1:00) (2:00-4:00) (1:000-1:00)						
05/04/2025 Saturday Computer Vision and Introduction to Neural Networks Introduction to OpenCV Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour Feature Extraction, Cascade Classifier and HaarCascade Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks Artificial Neural Networks Artificial Neural Networks Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent TensorFlow library for AI, Keras – High Level TensorFlow API 19/04/2025 Saturday Deep Learning Foundations and Advanced Regression with ANN: Learning Algorithm Classification with ANN Convolutional Neural Network: ICNN vs Human Brain Convolutional Neural Network: ICNN vs Human Brain Convolution operation, Padding, Stride, Filters(Remels), Pooling, Flattenning Delpoying convolutional neural Networks in TensorFlow (Image classification using CNN) Introduction to Long short-term memory (LSTM) and transformers 03/05/2025 Saturday			3,			
05/04/2025SaturdayComputer Vision and Introduction to Neural Networks 						
 Introduction to OpenCV Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour Feature Extraction, Cascade Classifier and HaarCascade Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks Artificial Neural Networks Artificial Neural Networks Feedforward Neural Network and Backpropagation Algorithm Activation Functions Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent TensorFlow library for Al, Keras – High Level TensorFlow API Deep Learning Foundations and Advanced Regression with ANN: Learning Algorithm Classification with ANN Convolutional Neural Networks in TensorFlow (Image classification using CNN) Introduction to the RNN model, Types of RNN & Use Case Introduction to DGX Server Introduction to DGX Server Introduction to DGX Server Introduction to DGX Server Introduction to DCKEr Containers and Kubeflow Notebooks Al Model Training and Analytics 		-		-		
 Image Processing: Working & implementation with Image, Edge Detection & smoothing of image, Working with resolution, Colour filtering on Image, Image Contour Feature Extraction, Cascade Classifier and HaarCascade Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks Artificial Neural Networks Artificial Neural Network and Backpropagation Algorithm Activation Functions Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent TensorFlow library for Al, Keras – High Level TensorFlow API 19/04/2025 Saturday Deep Learning Foundations and Advanced Regression with ANN: Learning Algorithm Convolutional Neural Network: CNNVs Human Brain Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning Deploying convolutional neural networks in TensorFlow (Image classification using CNN) Introduction to Long short-term memory (LSTM) and transformers 03/05/2025 Saturday Working with Nvida DGX100 SuperComputer Introduction to Docker Containers and Kubeflow Notebooks Al Model Training and Analytics 	05/04/2025	Saturday				
of image, Working with resolution, Colour filtering on Image, Image Contour(1000-1100)• Feature Extraction, Cascade Classifier and HaarCascade• Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade• Introduction to Neural Networks• Artificial Neural Networks. ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network and Backpropagation Algorithm• Artificial Neural Network and Backpropagation Algorithm• Activation Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras – High Level TensorFlow API5hrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Convolutional Neural Network: CNNVs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deeploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to Docker Containers and Kubeflow Notebooks • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and Analytics5hrs				· · · · · · · · · · · · · · · · · · ·		
• Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade Introduction to Neural Networks • Artificial Neural Networks • Artificial Neural Networks ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network and Backpropagation Algorithm • Activation Functions • Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras - High Level TensorFlow APIShrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Classification with ANN • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to DGX Server • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShrs				(2:00-4:00)		
Introduction to Neural Networks 						
• Artificial Neural Networks-ANN: ANN & Working, Single Layer Perceptron Model, Multilayer Neural Network • Feedforward Neural Network and Backpropagation Algorithm • Activation Functions • Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras – High Level TensorFlow API• Shrs (10:00-1:00) (2:00-4:00)19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Classification with ANN: Learning Algorithm • Classification with ANN: Learning Algorithm • Classification with ANN: Learning Algorithm • Convolutional Neural Network: CNN-Vs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deeploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to Long short-term memory (LSTM) and transformers• Shrs (10:00-1:00) (2:00-4:00)03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShrs (10:00-1:00) (2:00-4:00)						
Multilayer Neural Network • Feedforward Neural Network and Backpropagation Algorithm • Activation Functions • Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras – High Level TensorFlow APISolution Solution Solution19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Classification with ANN • Convolutional Neural Network: CNN-Vs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to DGX Server • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShrs						
• Feedforward Neural Network and Backpropagation Algorithm • Activation Functions • Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent • TensorFlow library for Al, Keras – High Level TensorFlow API• Second Stress • Second Stress • Regression with ANN: Learning Algorithm • Classification with ANN • Classification with ANN • Convolutional Neural Network: CNN Vs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning 						
 Activation Functions Cost Function: Applying Gradient Descent Algorithm, Stochastic Gradient Descent TensorFlow library for Al, Keras – High Level TensorFlow API 19/04/2025 Saturday Deep Learning Foundations and Advanced Regression with ANN: Learning Algorithm Classification with ANN Convolutional Neural Network: CNN Vs Human Brain Convolutional Neural Network: CNN Vs Human Brain Convolutional Neural networks in TensorFlow (Image classification using CNN) Introduction to the RNN model, Types of RNN & Use Case Introduction to Long short-term memory (LSTM) and transformers 03/05/2025 Saturday Working with Nvidia DGX100 SuperComputer Introduction to Docker Containers and Kubeflow Notebooks Al Model Training and Analytics 						
Image: SaturdayDeep Learning Foundations and Advanced 						
19/04/2025SaturdayDeep Learning Foundations and Advanced • Regression with ANN: Learning Algorithm • Classification with ANN • Convolutional Neural Network: CNN Vs Human Brain • Convolution operation, Padding, Stride, Filters (Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to Long short-term memory (LSTM) and transformersShrs (10:00-1:00) (2:00-4:00)03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShrs (10:00-1:00) (2:00-4:00)						
• Regression with ANN: Learning Algorithm(10:00-1:00)• Classification with ANN • Convolutional Neural Network: CNN Vs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to Long short-term memory (LSTM) and transformers5hrs03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and Analytics(10:00-1:00) (2:00-4:00)				-1		
• Classification with ANN • Convolutional Neural Network: CNN Vs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to Long short-term memory (LSTM) and transformers(2:00-4:00)03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and Analytics5hrs (10:00-1:00) (2:00-4:00)	19/04/2025	Saturday				
• Convolutional Neural Network: CNN Vs Human Brain • Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to Long short-term memory (LSTM) and transformersShrs (10:00-1:00) (2:00-4:00)03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShrs						
• Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning • Deploying convolutional neural networks in TensorFlow (Image classification using CNN) • Introduction to the RNN model, Types of RNN & Use Case • Introduction to Long short-term memory (LSTM) and transformers5hrs (10:00-1:00) (2:00-4:00)03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer • Introduction to DGX Server • Introduction to Docker Containers and Kubeflow Notebooks • Al Model Training and AnalyticsShrs				(
• Introduction to the RNN model, Types of RNN & Use Case • Introduction to Long short-term memory (LSTM) and transformers 03/05/2025 Saturday Working with Nvidia DGX100 SuperComputer • Shrs • Introduction to DGX Server • Introduction to DGX Server (10:00-1:00) • Introduction to Docker Containers and Kubeflow Notebooks • (2:00-4:00)			Convolution operation, Padding, Stride, Filters(Kernels), Pooling, Flattenning			
O3/05/2025 Saturday Working with Nvidia DGX100 SuperComputer Shrs • Introduction to DGX Server • Introduction to DGX Server (10:00-1:00) • Introduction to Docker Containers and Kubeflow Notebooks (2:00-4:00) • Al Model Training and Analytics • Introduction to Docker Containers						
03/05/2025SaturdayWorking with Nvidia DGX100 SuperComputer5hrs• Introduction to DGX Server(10:00-1:00)• Introduction to Docker Containers and Kubeflow Notebooks(2:00-4:00)• Al Model Training and Analytics•						
Introduction to DGX Server Introduction to Docker Containers and Kubeflow Notebooks Al Model Training and Analytics (10:00-1:00) (2:00-4:00)	02/05/2025	Cotundou		Elawa		
Introduction to Docker Containers and Kubeflow Notebooks Al Model Training and Analytics	03/05/2025	Saturday				
Al Model Training and Analytics						
Total 10				(2.00 7.00)		
			Total	40		

Registration Link https://forms.gle/Gor6TX2kJ2o9qHmj7

Payment Link/UPI

Bank Name	:	ICICI Bank Ltd.						
Branch Address	:	Krishna Apra Royal Plaza, D-2, E(acb), Alph <mark>a-1, Greater</mark>						
Noida, Gautam Budh Nagar, UP- 201306								
Account Holder	Name	: Sharda University-Seminar						
Account No.	:	025405005815 (CURRENT AC)						
IFSC Code	:	ICIC0000254						
SWIFT Code	:	ICICINBBCTS						
MICR Code	:	110229037						

FEE STRUCTURE

Module 1 (Data Analysis Fundamentals with Python)	1500
Module 2 (Machine Learning Foundations and Advanced)	1500
Module 3 (Deep Learning Foundations and Advanced) and	1500
Introducing Nvidia DGX100	
Module 1,2 and 3	4000

NOTE: Certificates will be issued for each module separately

Course Instructors from Center for AI in Medicine, Imaging & Forensics (CAIMIF)

Prof.(Dr.) Vasudha Arora Professor CSE, SSET & member CAIMIF

Convener Prof.Ashok Kumar Head, Center for AI in Medicine, Imaging & Forensics Sharda University

Dr. Shree Harsh Attri Associate Professor CSE, SSET & member CAIMIF

Coordinator Ms. Bushra Khan Assistant Professor SAHS & coordinator CAIMIF

Lecture Time: 10:00AM to 1:00PM(OFFLINE), 2:00PM to 4:00 PM (Offline)

Venue : Center for Artificial Intelligence in Medicine, Imaging and Forensics Room 103 B, Block 2, Sharda University